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ABSTRACT

Rayleigh-Bernard convection offers a unique flow situation in which buoyancy-generated turbulence

can be studied in isolation, free of the complicating influence of shear production of turbulence. The

objective of this paper is to examine and model important aspects of buoyancy-generated turbulence

using direct numerical simulation (DNS) data of Rayleigh-Bernard convection. In particular, we exam-

ine the pressure-strain and pressure temperature-gradient correlations, turbulent transport of Reynolds

stress, and assumptions pertaining to algebraic modeling of thermal flux and Reynolds stress.
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1 Introduction

Buoyancy generated turbulence plays an important role in the dynamics of atmospheric boundary layers

and engineering applications such as space heating and cooling, electronic equipment cooling and so-

lar collectors. While shear-generated turbulence (mechanical turbulence) has been studied extensively

leading to the development of reasonably reliable engineering tools (turbulence models), buoyancy-

generated turbulence is relatively less scrutinized [1]. Many of the engineering calculations of thermally

dominated flows typically employ empirical correlations involving non-dimensional parameters such as

Nusselt, Grashoff and Rayleigh numbers. These empirical correlations lack generality and are usually

useful only in situations for which they have been calibrated. Therefore, in buoyant turbulent flows,

there is certainly a need for turbulence models that are based on governing equations of the flow and

hence possess a reasonable degree of generality. Accurate modeling of buoyancy generated turbulence

requires, at least, a working knowledge and understanding of that process. Data gathered from labora-

tory experiments are usually limited to integral quantities such as heat and mass transfer coefficients.

While these quantities are very useful for ultimately validating the models, they lack sufficient detail

to shed light on the physics of buoyant turbulence. Direct numerical simulation (DNS), a calculation

wherein all of the time and length scales of turbulence are resolved, can provide data with the required

degree of detail to study the physics of buoyancy generated turbulence. Although DNS is usually re-

stricted to simple geometry and modest Reynolds numbers, it captures important universal aspects of

the physics and has led to the development of some reasonable models of shear-generated turbulence.

It is only recently that DNS data has been used in the development of buoyant turbulence models. Dol,

Hanjalic and Kenjeres [2] and Girimaji and Hanjalic [3] have used DNS turbulent natural convection

data of Boudjemadi et al. [4] and Versteegh et al. [5] to study certain modeling assumptions and

ultimately validate the models. The turbulent convection in this case is between two parallel vertical

plates at different temperatures and this configuration gives rise to shear as well as buoyancy generated

turbulence.
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Our objective in this paper is, using DNS data, to study the Reynolds stress and turbulent thermal

flux in a flow where buoyancy is the only source of turbulence production. The turbulent flow in

the present case is the Rayleigh-Bernard convection between two horizontal parallel plates at different

temperatures. The lower plate is hotter than the upper plate leading to unstable stratification. The

turbulence is statistically homogeneous along horizontal planes. The mean velocity is zero everywhere

and, hence, there is no shear production of turbulence. Rayleigh-Bernard convection offers a unique flow

situation in which buoyancy-generated turbulence can be studied in isolation, free from the complicating

influence of shear-generated turbulence. The four specific objectives of this paper are to: (i) to evaluate

the pressure-strain and pressure-temperature gradient correlation models using DNS data; (ii) to study

the turbulent transport of Reynolds stress and thermal flux; (iii) to examine the various modeling

assumptions made to derive algebraic stress models; and, (iv) to develop fully explicit algebraic models

for Reynolds stress and thermal flux.

The paper is organized as follows. In Section 2, the governing equations of Reynolds stress and

turbulent thermal flux are presented along with their standard closure models. Algebraic models for

the Reynolds stress and thermal flux are also developed. Description of the numerical simulation of

turbulent Rayleigh-Bernard convection is given in Section 3. We use the simulation data to evaluate and

develop various closure models in the Reynolds stress and turbulent thermal flux evolution equations in

Section 4. Also in Section 4, we examine the validity of the various assumptions made in the algebraic

stress methodology. We conclude in Section 5 with a brief discussion.

2 Governing equations and model development

The buoyant turbulent flow considered here is governed by the usual conservation of mass (continuity),

momentum (Navier-Stokes) and temperature (energy) equations subject to the Boussinesq approxima-

tion. The flow variables are decomposed into their mean (upper case symbols) and fluctuating (lower

case symbols) parts and the equations are Reynolds averaged (averaging is indicated by angular brack-

ets). The resulting Reynolds-averaged Navier Stokes equations are given in most standard text books
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and are not presented here. These averaged equations contain two unclosed terms, the Reynolds stress

(〈uiuj〉) and the turbulent thermal flux (〈uiθ〉).

2.1 Transport equations for 〈uiuj〉 and 〈uiθ〉.

The transport equation for Reynolds stress in a buoyant turbulent flow (with no mean velocity gradi-

ents) is given by (Peeters and Henkes [6])

∂〈uiuj〉
∂t

+ Uk〈uiuj〉,k = Gij − εij + φij +Dij , (1)

where the subscript , k indicates differentiation in the k direction. The terms, respectively, are the time

rate of change, advection, buoyant production (Gij), dissipation (εij), pressure-strain correlation (φij)

and total turbulent diffusion (Dij) of Reynolds stress:

Gij = −β[〈uiθ〉gj + 〈ujθ〉gi] (2)

εij = 2ν〈ui,kuj,k〉

φij = 〈 p

ρ0
(ui,j + uj,i)〉

Dij = [−〈 p

ρ0
ui〉δjk − 〈 p

ρ0
uj〉δik − 〈uiujuk〉+ ν〈uiuj〉,k],k.

The acceleration due to gravity is given by gi, ν is kinematic viscosity of the fluid, and ρ0 is the

reference density of the fluid. The buoyant production and dissipation rate of turbulent kinetic energy

(K = 1
2〈uiui〉) are, respectively, G = 1

2Gii and ε = 1
2εii. The dissipation rate tensor can be split into

its isotropic and anisotropic deviatoric parts as follows:

εij =
2
3
εδij + dij . (3)

Citing small scale isotropy, the anisotropy of dissipation is generally neglected. The pressure-strain

correlation is usually modeled as [6]

φij = −C1ε(
〈uiuj〉
2K

− 1
3
δij) + C5β(〈uiθ〉gj + 〈ujθ〉gi − 2

3
〈ukθ〉gkδij), (4)
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where C1 (usually chosen value lies between 3 and 5) and C5 (in the range 0.33 to 0.6) are numerical

constants. In shear-generated turbulence, the pressure-strain correlation model will also be a function

of the mean flow strain rate and vorticity tensors.

The evolution equation of the thermal flux is

∂〈uiθ〉
∂t

+ Uk〈uiθ〉,k = Piθ + Giθ + φiθ +Diθ − εiθ (5)

The terms in the equation correspond to: the time rate of change, advection, thermal production (Piθ),

buoyancy production (Giθ), pressure-temperature-gradient correlation (φiθ), total turbulent diffusion

(Diθ) and viscous dissipation (εiθ):

Piθ = −〈uiuk〉T,k; Giθ = −βgi〈θ2〉; (6)

φiθ = 〈 p

ρ0
θ,i〉; εiθ = (ν + κ)〈ui,kθ,k〉

Diθ = [−〈 p

ρ0
θ〉δik − 〈uiθuk〉+ ν〈θui,k〉+ κ〈uiθ,k〉],k.

The thermal diffusivity of the fluid is κ. The pressure-temperature correlation (in the absence of mean

flow velocity gradients) is usually modeled as [6]

φiθ = −C1θ
ε

K
〈uiθ〉+ C3θ(βgi〈θ2〉). (7)

The value of the constant C1θ in most models range from 3 to 5 and C3θ is between 0.33 and 0.5.

The viscous dissipation (εiθ) of thermal flux also needs to be modeled. In sufficiently high Reynolds

number flows, the small scales are approximately isotropic leading to εiθ being zero. At lower Reynolds

numbers, especially near the walls, viscous dissipation of thermal flux may be non-zero and is modeled

as [1]

εiθ = fεθ
√

εεθ
〈uiθ〉√
K〈θ2〉 , (8)

where fεθ is a function of the turbulent Peclet number and goes to zero at sufficiently high Reynolds

number. The viscous dissipation rate of temperature variance is given by εθ = κ〈θ,kθ,k〉.
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2.2 Algebraic modeling of 〈uiuj〉 and 〈uiθ〉

Often, for calculating practical flows, it is computationally too expensive to solve six differential equa-

tions for the Reynolds stress and three more for thermal flux. A more viable approach is the two-

equation level of turbulence modeling. At this level of turbulence modeling, the mean fields, turbulent

kinetic energy, scalar variance and dissipation rate are obtained by solving their respective evolution

equations. Closure is achieved by modeling Reynolds stress and thermal flux with algebraic expressions

in terms of the known quantities. We now seek to formulate algebraic models for the anisotropy of

Reynolds stress and the correlation coefficient between velocity and temperature fluctuations. We will

ultimately verify the validity of the modeling assumptions using simulation data.

The anisotropy of the Reynolds stress is defined as

bij =
〈uiuj〉
2K

− 1
3
δij , (9)

so that

〈uiuj〉 = 2Kbij +
2
3
Kδij . (10)

The correlation coefficient between the thermal and velocity fluctuations is defined as

Fi =
〈θui〉√
K

√〈θ2〉 . (11)

It is easily seen that the Reynolds stress and thermal flux can be calculated once bij, Fi, K and 〈θ2〉

are known.

The governing equations of turbulent kinetic energy and temperature variance are

dK

dt
= G− ε +DK (12)

and,
d〈θ2〉

dt
= 2(Pθ − εθ) +Dθ, (13)

where the substantial derivative d/dt = ∂/∂t + Uj〈.〉, j. In the above equations, the production of

temperature variance is given by

Pθ = −〈uiθ〉T,i (14)
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and, DK = 1
2Dii and Dθ = (κ〈θ2〉,kk − 〈ukθ

2〉,k) are the total turbulent transport of kinetic energy and

temperature variance respectively.

2.3 Transport equations for bij and Fi.

The rate of change of the anisotropy tensor and thermal flux correlation coefficient can be evaluated

using chain rule
dbij

dt
=

1
2K

d〈uiuj〉
dt

− 〈uiuj〉
2K2

dK

dt
; (15)

and,
dFi

dt
=

1√
K〈θ2〉

d〈θui〉
dt

− 1
2
Fi[

1
K

dK

dt
+

1
〈θ2〉

d〈θ2〉
dt

]. (16)

Since we are dealing with normalized quantities, it is best to consider the evolution equations in

normalized time. The turbulent velocity and thermal timescales can be defined respectively as

τv =
K

ε
; τθ =

〈θ2〉
εθ

. (17)

The overall timescale (τ) of the buoyant process is taken to be the geometric mean of the individual

timescales:

τ =
√

τvτθ. (18)

Time increment in normalized time is given by dt∗ = dt/τ .

The evolution equation of the anisotropy tensor can be easily derived by substituting equations (1),

(4) and (12) into equation (15). In normalized time, the evolution equation is

dbij

dt∗
= −1

2
(Fig

∗
j + Fjg

∗
i −

2
3
Fkg

∗
kδij)− 1

2
C1

τε

K
bij (19)

+
C5

2
(Fig

∗
j + Fjg

∗
i −

2
3
Fkg

∗
kδij) + (Fkg

∗
k +

τε

K
)bij

τ [
1

2K
Dij − 〈uiuj〉

2K2
DK ] +

τ

2K
dij

= [
τε

K
(1− C1

2
) + Fkg

∗
k]bij +

C5 − 1
2

(Fig
∗
j + Fjg

∗
i −

2
3
Fkg

∗
kδij)

τ [
1

2K
Dij − 〈uiuj〉

2K2
DK ] +

τ

2K
dij .
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The following normalizations have been used:

T ∗
j = τ

√
K

〈θ2〉T,j ; g∗i = β

√
〈θ2〉
K

τgi. (20)

The transport equation for the thermal flux correlation coefficient is derived by substituting equa-

tions (5), (7), (8), (12) and (13) into equation (16):

dFi

dt∗
= −2(bij +

1
3
δij)T ∗

j − ηg∗i − (21)

Fi(C1θ
τ

τv
+ fεθ)− 1

2
Fi[

√
τθ

τv
(
G

ε
− 1) + 2

√
τv

τθ
(
Pθ

εθ
− 1)]

τ [
Diθ√
K〈θ2〉 −

1
2
Fi(

DK

K
+
Dθ

〈θ2〉)],

We can simplify the various production to dissipation ratios as follows:

1
2

√
τθ

τv
[
G

ε
] =

1
2

√
τθ

τv
[
−βgi〈θui〉

ε
] = −1

2
g∗i Fi, (22)√

τv

τθ
[
Pθ

εθ
] =

√
τv

τθ
[
−〈uiθ〉T,i

εθ
] = −FiT

∗
i .

Weak equilibrium assumption. In slowly evolving flows, the mean quantities (T ∗
i and g∗i ) evolve

more slowly in space and time than the turbulence quantities (bij and Fi). The turbulence quantities, in

normalized time, quickly settle down to equilibrium values on the imposition of mean flow parameters.

The weak-equilibrium assumption states that the turbulence is approximately in equilibrium with the

imposed mean flow parameters. This equilibrium state of the turbulence can be obtained by setting

the substantial derivative of the turbulence quantities to zero:

dbij

dt∗
=

dFi

dt∗
= 0. (23)

Further, in the weak-equilibrium limit we assume that the turbulent transport of anisotropy tensor

and the thermal flux correlation coefficient are negligible. This is equivalent to the following models

for turbulent transport:

Dij =
〈uiuj〉

K
DK (24)

Diθ = Fi[
1
2

√
K〈θ2〉(DK

K
+
Dθ

〈θ2〉 )].

7



2.4 Algebraic model for bij.

The transport equation (19) for the anisotropy of Reynolds stress, on invoking the weak-equilibrium

assumptions (equations 23 and 24) yields

bij =
C5 − 1

τε
K (C1 − 2)− 2Fkg

∗
k

(Fig
∗
j + Fjg

∗
i −

2
3
Fkg

∗
kδij). (25)

This is the algebraic model for the anisotropy of Reynolds stress in buoyancy dominated turbulent flows.

The anisotropy is a function of the normalized gravity and thermal flux vectors and the constants in

the pressure strain-correlation model.

2.5 Algebraic model for Fi.

Invoking the approximations in equations (23) and (24), we obtain from equation (21)

Fi = − 1
Q

[2bijT
∗
j +

2
3
T ∗

i + ηg∗i ], (26)

where η = 1− C3θ and

Q ≡ 1
2
[
√

τθ

τv
(
G

ε
− 1) + 2

√
τv

τθ
(
Pθ

εθ
− 1)] + C1θ

τ

τv
+ fεθi. (27)

Using equation (22), we can write

Q = −Fi(T ∗
i +

1
2
g∗i ) + Q0 (28)

where

Q0 =
√

τθ

τv
(C1θ − 1

2
)−

√
τv

τθ
+ fεθ. (29)

The expression given in equation (26) is not yet a model for Fi since the thermal flux appears on the

right hand side of the equation also (in Q). The modeling will be complete only if Q can be expressed

in terms of known quantities.
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Determination of Q. The quantity Q must be such that the model for Fi is self-consistent. Multi-

plying either side of equation (26) by (T ∗
i + 1

2g∗i ) we obtain:

Fi(T ∗
i +

1
2
g∗i ) = − 1

Q
(ηg∗i +

2
3
T ∗

i + 2bijT
∗
j )(T ∗

i +
1
2
g∗i ), (30)

which can be restated using equation (28) as

Q(Q0 −Q) = −(ηg∗i +
2
3
T ∗

i + 2bijT
∗
j )(T ∗

i +
1
2
g∗i ), (31)

We need to solve this equation to obtain Q. Such a value of Q will lead to a self-consistent model for

Fi.

Define the following invariants:

I1 = g∗i (T
∗
i +

1
2
g∗i ); I2 = T ∗

i (T ∗
i +

1
2
g∗i ); I3 = bijT

∗
j (T ∗

i +
1
2
g∗i ). (32)

Substitution of (32) into equation (31) leads to a quadratic equation for Q:

Q2 −Q0Q− I0 = 0, (33)

where

I0 ≡ ηI1 +
2
3
I2 + 2I3. (34)

Therefore,

Q =
1
2
[Q0 ±

√
Q2

0 + 4I0]. (35)

Clearly Q has to be real. Therefore, it is very important that the pressure-temperature gradient

correlation model coefficients are such that the discriminant is always positive.

In the context of Rayleigh-Benard convection considered here, the nondimensional mean thermal

gradient, T ∗
i , exists only along the vertical direction (T ∗

1 = T ∗
2 = 0 and T ∗

3 6= 0). At large Rayleigh

numbers, and correspondingly large Reynolds numbers, this normalized vertical gradient of mean tem-

perature is large and negative and confined to thin thermal boundary layers near the top and bottom

boundaries. In the interior, away from the boundaries, T ∗
3 ≈ 0. The nondimensional gravity vector g∗3
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is also negative since it points opposite to the vertical z direction. The negativity of both T ∗
3 and g∗3

guarantees that in Rayleigh-Bernard convection I1, I2 and I3 are each individually positive leading to

I0 being positive over the entire convective layer. As a result, the discriminant, Q2
0 + 4I0, is always

positive. In the interior I0 can be approximated as η
2 (g∗3)2.

Given that I0 is positive, it is easy to show that one of the roots is always positive:

Q(1) = Q0 +
√

Q2
0 + 4I0 ≥ 0. (36)

The other root is always negative:

Q(2) = Q0 −
√

Q2
0 + 4I0 ≤ 0. (37)

On inspection of the model for thermal flux (equation 26) it is clear that a positive value of Q leads

to a gradient diffusion of thermal flux, whereas a negative value means counter-gradient diffusion.

In a homogeneous turbulent convection flow near the ‘weak-equilibrium’ state, counter-gradient is

unphysical. Therefore, we deem that the only physically permissible model for Q is the positive root

given in equation (36). Equation (26) in conjunction with (36) is the fully-explicit and self-consistent

model for the normalized thermal flux.

3 Numerical simulation of Rayleigh-Bernard turbulence

We consider the classical problem of Rayleigh-Benard convection in a layer of fluid bounded between

two horizontal plates. When the bottom plate is maintained sufficiently hotter than the top plate,

thermal instability drives the flow and at large enough temperature difference the flow becomes fully

turbulent. Since in this configuration the mean velocity is identically zero, turbulence is purely driven

by buoyancy and shear generation is absent. A DNS database ([7], [8]) will be used to test the validity

of the various modeling assumptions and the effectiveness of algebraic modeling of Reynolds stress and

thermal flux terms in this purely buoyancy driven flow.

Numerical simulations were performed in a box of a square platform with height to width aspect

ratio of 2
√

2. A schematic of the computational geometry along with the coordinates is shown in figure
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1. The governing Boussinesq equation along with the incompressibility condition were solved using

spectral methods. The top and bottom boundaries were considered to be isothermal, impermeable and

stress-free, while the horizontal directions were periodic. One of the nondimensional parameters in

this formulation, the Prandtl number, was chosen to be 0.72 corresponding to that of air. The other

nondimensional parameter, the Rayleigh number, was chosen to be 6.5× 106. This Rayleigh number is

nearly four orders of magnitude greater than the critical Rayleigh number of 657 and this places present

simulation in the hard thermal turbulence regime, according to the classification of Castaing et al. [9].

The computations were well resolved with a uniform grid of 96 points along the horizontal directions

and 97 points along the vertical direction. Computational data was collected over a long duration of

more than 40 eddy turn-over times, defined as H/K1/2, where H is the height of the convecting layer

of fluid. All of the data presented below are nondimensionalized with a length scale of H, velocity scale

of
√

RaPr/2Nu(κ/H) and temperature scale of
√

4Nu3/RaPr∆T , where κ is the thermal diffusivity

of the fluid, ∆T is the temperature difference between the top and the bottom boundaries. The

Nusselt number, Nu, for the present simulation is about 23. The above proper scaling [10] differs from

the conventional diffusional scaling by factors
√

RaPr/2Nu and
√

4Nu3/RaPr in the velocity and

temperature scales. The diffusion scaling is well known to result in very large nondimensional velocity

at large Rayleigh numbers and the above proper scaling will reduce all nondimensional quantities to

order one.

The periodic boundary conditions along the horizontal directions lead to translational invariance

and statistical homogeneity along the x and y directions. The presence of top and bottom boundaries

introduces inhomogeneity along the vertical direction. As a consequence, single point turbulence statis-

tics are functions of only the vertical direction. Even in the vertical direction approximate homogeneity

can be expected in the interior sufficiently away from the top and bottom boundaries. In figure 2, the

mean temperature, < θ >, the mean square temperature fluctuation, < θ2 > and the turbulent kinetic

energy, K, are plotted as a function of the vertical coordinate. It is clear that the rapid variation in

the mean temperature is limited to the two thermal boundary layers adjacent to the top and bottom
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boundaries and that the mean temperature is nearly uniform in the interior 90% of the convecting layer.

Owing to the stress-free boundary conditions, the horizontal components of velocity are non-zero at

the top and bottom boundaries, resulting in relatively large kinetic energy at z=0 and 1. Both < θ2 >

and K are also nearly constant over the interior 50% of the layer.

4 Evaluation of closure models and modeling assumptions

In this Section, we use simulation data to evaluate models and modeling assumptions. Specifically,

we investigate the following three important modeling issues: (i) pressure correlation models; (ii) the

evolution equation budgets of Reynolds stress anisotropy and normalized thermal flux to evaluate the

validity of algebraic stress modeling assumptions; and, (iii) behavior of the turbulent transport terms.

Owing to homogeneity along the horizontal directions (x-y plane), the Reynolds stress anisotropy

(bij) and thermal flux correlation coefficient (Fi) are both functions of only the vertical (z) direction.

Furthermore, invariance between x and y directions, along with the constraint bii = 0, leads to b11 =

b22 = −1
2b33. From symmetry arguments the other off-diagonal terms of the Reynolds stress anisotropy

tensor are zero. Similarly, mean thermal flux exists only along the vertical direction and the horizontal

components of the thermal flux vector are zero. Therefore, in the following sections we perform the

model evaluation on the b33 and F3 components only. Models will be first evaluated with standard

commonly used model constants. Using the DNS, optimal values of model coefficients will also be

evaluated. Here the optimal value of the model coefficient is that which minimizes the root mean

square of the difference between the data and the model.

4.1 Reynolds stress models

Pressure-strain correlation. Away from the walls, the pressure-strain correlation is the most im-

portant turbulence process that needs closure modeling. The fact that this phenomenon is present in

the simplest of homogeneous flows as well as the most complex has made this one of the most studied

turbulent processes in mechanical turbulence. The fluctuating pressure in buoyancy-driven turbulence
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can be divided into two parts, each governed by a Poisson equation:

ps
,ii = −ui,juj,i (38)

pf
,ii = βgiθ,i,

where ps and pf are the slow and fast (buoyancy) components of pressure. Along the same lines the

pressure strain model is decomposed into the slow and the fast pressure-strain correlation terms. The

slow term is also called the return to isotropy term, since on the removal of all turbulence generating

mechanism, this term returns the turbulence from an initial anisotropic state to isotropic state.

The most comprehensive pressure-strain correlation model in buoyant turbulence is given by Ris-

torcelli et al [11]. This model is constructed using joint realizability constraints on Reynolds stress and

turbulent thermal flux and has the right behavior in rotating flows. The Ristorcelli model is however

quite complicated in structure and the model most commonly used in practical applications is as given

in equation (4). When appropriately normalized, as they appear in the bij evolution equation (19), the

fast and the slow terms of the model are

τ

2K
φf

ij =
1
2
C5(Fig

∗
j + g∗i Fj − 2

3
Fkg

∗
kδij) (39)

τ

2K
φs

ij = −C1
τε

2K
bij,

where C1 and C5 are numerical constants. The more general pressure-strain model involves additional

constants C2-C4 and are typically used with production terms of mechanical origin.

In figure 3, the φf
33 component as calculated from DNS data is presented as a function of vertical

height z. The standard model with a commonly chosen value of 0.5 for C5 is also plotted. Clearly,

the model reproduces the DNS results very poorly. Even the qualitative trend is not captured by the

model. It should be pointed out that the model does not contain any near-wall correction terms and,

hence, cannot be expected to do well close to the wall. But in the center region of the flow, the model

presents a nearly flat profile, whereas the data clearly indicates a parabolic profile with the maximum

at the center. In search of better agreement, we hypothesize an extended fast pressure model of a type
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sometimes used in mechanical turbulence:

τ

2K
φf

ij = C∗
1

τ

2K
Gbij +

1
2
C5(Fig

∗
j + g∗i Fj − 2

3
Fkg∗kδij), (40)

where G is the buoyant production rate. The optimum values for C∗
1 and C5 are determined to be −3.0

and 0.54 respectively. The optimized model is also plotted in figure 3. As can be seen, the agreement

away from the walls is very good. The negative value of C∗
1 is significant, for it implies that in energetic

turbulence the model will remain realizable. This is because, in energetic, turbulence, production is

positive and this term has the effect of bringing anisotropy back towards zero which is indeed the

function of the pressure strain correlation, to redistribute the kinetic energy equally among the three

components. Had the coefficient been positive, the new term would have increased the anisotropy

beyond the bounds of realizability in highly energetic turbulence.

The evaluation of the slow-term model is performed in figure 4. The DNS data indicates that the

slow-term is very large at the walls and gets progressively smaller, attaining its minimum near the

center. The standard model captures the trend qualitatively, but quantitative agreement leaves a lot to

be desired. When an optimized value is used for C1, the agreement improves slightly near the walls at

the expense of poorer agreement at the center. An expanded model which included a non-linear term

in anisotropy was tried without much improvement in the agreement. This leads us to the conclusion,

that the numerical coefficient C1 should perhaps be a variable depending upon the local state of the

turbulence.

Algebraic model verification and budget of bij. The budget of bij evolution equation is now

investigated to evaluate the validity of the algebraic modeling assumptions. For the weak-equilibrium

assumption to be valid we should have negligible rate of change of anisotropy following a fluid particle

and negligible turbulent transport of anisotropy so that the balance is between production, dissipation

and pressure-strain correlation. The turbulence under consideration here is statistically stationary and

has no mean velocity field and hence there is no mean flow advection of anisotropy. Therefore, algebraic

modeling assumption will be valid if the turbulent transport of bij is negligible. Referring to equation
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(19), the assumptions can be stated as

Db
ij ≈ db

ij ≈ 0; φb
ij = −(P b

ij − εb
ij), (41)

The definitions of these terms can be easily gathered from equation (19):

P b
ij ≡ −1

2
[Fig

∗
j + Fjg

∗
i −

2
3
Fkg

∗
kδij ] + Fkg

∗
kbij (42)

εb
ij ≡ −τε

K
bij

φb
ij ≡ −C1

2
τε

K
bij +

C∗
1

2
Fkg

∗
kbij +

C5

2
[Fig

∗
j + Fjg

∗
i −

2
3
Fkg

∗
kδij ]

Db
ij ≡ τ [

1
2K

Dij − 〈uiuj〉
2K2

DK ]

db
ij ≡ τ

2K
dij .

In figure 5, φb
33, −(P b

33−εb
33), Db

ij and db
ij are plotted. In order for the algebraic model to be successful it

is required that φb
33 ≈ −(P b

33− εb
33) and the remaining terms be negligible. This is clearly not the case.

The turbulent transport of anisotropy, although smaller than the other terms, is not entirely negligible

even in the center of the channel. This term is large enough to result in significant differences between

the pressure-strain correlation model and −(P b
33 − εb

33) . Therefore, we conclude that the algebraic

Reynolds stress model (equation 25) may not be appropriate for this flow. The anisotropy of dissipation

is also shown in the figure and it is negligible.

Turbulent transport of bij. The modeling assumption that the turbulent transport of bij is neg-

ligible implies that the anisotropy of turbulent transport is identical to that of the Reynolds stress

itself:

Db
ij ≈ 0;

Dij

2D − 1
3
δij ≈ 〈uiuj〉

2K
− 1

3
δij = bij . (43)

From figure 5, it is clear that such is not the case and, hence, we will now take a closer look at

turbulent transport. It can be seen from equation (2) that the turbulent transport can be classified

into pressure transport, transport through triple correlation and viscous transport. In figure 6, the three

components of Db
33 calculated from the DNS data are shown as a function of the vertical height. While
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the viscous transport is reasonably small, the other two are certainly not negligible. The pressure

transport is particularly large near the walls and significant even near the center and needs to be

carefully accounted for in modeling.

4.2 Thermal flux models

Pressure temperature correlations. The pressure temperature-gradient correlation can again be

decomposed into slow and fast parts which are modeled commonly as follows:

φs
iθ ≡ 〈p

s

ρ0

∂θ

∂xi
〉 ≈ −C1θ

ε

K
〈uiθ〉, (44)

φf
iθ ≡ 〈p

f

ρ0

∂θ

∂xi
〉 ≈ C3θ(βgi〈θ2〉).

Dol and Hanjalic [2] found that the commonly used models were better suited for simulating the

temperature pressure-gradient terms. In other words, they propose

−〈 θ

ρ0

∂ps

∂xi
〉 ≈ −C1θ

ε

K
〈uiθ〉, (45)

−〈 θ

ρ0

∂pf

∂xi
〉 ≈ C3θ(βgi〈θ2〉).

Here we will be verify their observation using the present DNS data.

In figure 7, the slow-term model is tested against the pressure temperature-gradient correlation and

the temperature pressure-gradient correlation evaluated from DNS data. Result for the only non-zero,

z, component is shown. Clearly the model reproduces the behavior of the temperature pressure-gradient

data very well throughout the domain of comparison including the near wall regions. The optimum

value of the coefficient is found to be C1θ = 2.3. In figure 8, similar comparison is performed with

the fast term model. In the interior of the flow, the DNS data shows that the correlations are nearly

constant at their respective values. The fast-term model also exhibits nearly flat behavior. Depending

upon the value of the model coefficient chosen, either of the correlation is reproduced well. The

optimum value for matching the pressure temperature-gradient correlation is C3θ = 0.22 and that for

temperature pressure-gradient correlation is C3θ = 0.44. The near-wall agreement in the fast-term case

is not as good as in the slow-term case.
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Dissipation of turbulent thermal flux. The model for dissipation of thermal flux is given in

Section 2 and is repeated here for convenience:

εiθ = fεθ
√

εεθFi, (46)

where fεθ goes to zero in sufficiently high Reynolds number flows. The dissipation of thermal flux

should be identically zero in high Reynolds number turbulence when the small scales are statistically

isotropic. But in a flow such as the present one, the Reynolds number is not high enough for εiθ to

vanish. The dissipation ε3θ calculated from DNS data is presented in figure 9. It has its highest value

near the wall and is fairly low in the center of the flow. Near the walls the turbulence is least isotropic

had hence the value of this dissipation is high. Away from the wall, the flow is more isotropic leading

to lower values of ε3θ. The value of the model coefficient can be estimated from the DNS data as:

fεθ =
1
F3

ε3θ√
εεθ

. (47)

The value of fεθ thus calculated is plotted in figure 9. The coefficient appears to be a fairly strong

function of z close to the walls, but is nearly a constant at 0.7 near the center of the flow.

Turbulent transport of Fi. The turbulent transport of Fi can be inferred from equation (21):

DF
iθ = τ [

Diθ√
K〈θ2〉 −

1
2
Fi(

DK

K
+
Dθ

〈θ2〉 )]. (48)

The standard assumption is that Diθ can be modeled as

Diθ ≈ −1
2
〈uiθ〉[DK

K
+
Dθ

〈θ2〉 ] (49)

so that DF
iθ can be neglected.

The validity of this assumption is verified in figure 10, where D3θ and 1
2〈u3θ〉[Dk

K + Dθ
〈θ2〉 ] are plot-

ted using DNS data. First we plot D3θ as defined in equation (6) which is consistent with with the

interpretation of φ3θ as the pressure temperature-gradient correlation (equation 44). Also plotted in

this figure is D3θ computed without the pressure-temperature correlation (see equation 6) and this
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formulation is consistent with the interpretation of φ3θ as the temperature pressure-gradient correla-

tion (equation 45). The model appears to qualitatively capture the features well in either case but

quantitative agreement is only reasonable. The overall agreement seems somewhat better with the

inclusion of pressure-temperature correlation in the definition of D3θ, as it appears in equation 6.

Budget of Fi evolution equation. Since the turbulence is statistically stationary, the evolution

equation of Fi can be rewritten as (see equation 21)

PF
iθ + εF

iθ + φF
iθ +DF

iθ = 0. (50)

The production, dissipation, pressure-strain redistribution and turbulent transport of Fi groupings

can be surmised from equation (21). The z component of these quantities are shown in figure 11.

The production, dissipation and pressure correlation terms are clearly larger than the transport term.

Nonetheless, the transport term is not negligible, especially close to the walls.

Due to the overall reasonable predictions of the pressure-temperature correlation models and some-

what diminished size of turbulent transport in the center regions of the flow, the algebraic model may

be more appropriate for the thermal flux than for the Reynolds stresses. The algebraic model for

F3 derived in Section 2 is compared against DNS data in figure 12. The model displays a bi-modal

behavior not seen in the DNS data. The maximum disagreement region here coincides with the rather

large disagreement region in figure 7 between the fast-pressure model and corresponding DNS data.

Despite this disagreement, due to fundamental validity of the algebraic assumption in the case of Fi,

we believe that a reasonable algebraic model is quite possible for Fi. The search for a better algebraic

model, however, should start with the development of better pressure-gradient temperature correlation

models.

5 Conclusion

The various turbulent process of second order closure modeling interest in a buoyancy driven turbulence

are closely examined using direct numerical simulations data of Rayleigh Bernard convection. This flow
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was selected for the investigation since it offers a unique situation where buoyant turbulence can be

studied without the complicating influence of shear turbulence.

Our study demonstrates that the commonly used pressure strain correlation models perform some-

what poorly even in the interior parts of the flow away from the wall effects. While the prediction of the

rapid part of the pressure strain correlation can be improved with the addition of an extended term,

the ability to predict the slow pressure strain correlation remains a challenge. Turbulent transport

appears to play an important part in the evolution of Reynolds stress anisotropy, and, consequently,

the algebraic stress modeling assumptions are not well satisfied by this flow.

On the thermal flux modeling side, our study reaffirms the observation of Dol et al [2] who state

that the current models capture the behavior of pressure-gradient temperature correlation rather than

the pressure temperature-gradient correlation. This would obviate the current practice of splitting

the pressure correlation term into homogeneous and inhomogeneous parts. The data shows that the

thermal flux dissipation is not negligible and that the model coefficient in nearly a constant away from

the walls. The turbulent transport appears to play a somewhat smaller, but still significant role in

the evolution of thermal flux. Overall, the likelihood of a reasonable algebraic model appears more

promising in the case of thermal flux, but the development of such a model can only come from improved

pressure-correlation models.

Fully-explicit and self-consistent algebraic models for the Reynolds stress and thermal flux have

also been derived from their respective evolution equations using the weak-equilibrium assumption.

Although not quite applicable for the present flow, we expect these models to be adequate for realistic

flows at higher Reynolds numbers where the assumptions made are likely to be more valid.
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Figure 1: Schematic of the computational model of Rayleigh-Benard convection.
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Figure 2: Variation in the mean temperature, < θ >, mean square temperature fluctuation, < θ2 >
and turbulent kinetic energy, K in the vertical direction.
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Figure 3: Pressure-strain correlation fast term: DNS data vs. model. Both a standard model with
C2

1 = 0.0 and C5 = 0.5 and an optimal model with C2
1 = −3.0 and C5 = 0.54 are compared with the

DNS data. The optimal value for the constants are evaluated by minimizing the difference between
the model and the DNS data over the interior 50% of the layer.
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Figure 4: Pressure-strain correlation slow term: DNS data vs. model. Here again the results of both
the standard and optimal pressure-strain model are compared with the DNS data.
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Figure 5: Budget of bij evolution equation.
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Figure 6: Components of turbulent transport of bij .

27



Figure 7: Pressure-temperature correlation for the slow term. DNS data vs. model. The DNS data for
both the pressure-temperature gradient and the temperature-pressure gradient terms are shown.
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Figure 8: Pressure-temperature correlation for the fast term. DNS data vs. model. The DNS data for
both the pressure-temperature gradient and the temperature-pressure gradient terms are shown.
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Figure 9: A plot of dissipation of turbulent thermal flux, εiθ against z. Also shown is the model
constant, fεθ evaluated from the DNS data.
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Figure 10: Turbulent transport of Fi.
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Figure 11: Budget of Fi evolution equation.
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Figure 12: Algebraic model for F3.
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